How to Improve Education Programs With Drones

At the start of the new millennium, academic research identified a potential problem for students in the United States.

Compared to their counterparts around the world, American students were becoming less prepared for the modern global workforce. Studies identified a particular shortfall in understanding science and math-related concepts.

In response to the problem, in 2001, the U.S. National Science Foundation coined the acronym STEM (Science, Technology, Engineering, & Mathematics). The acronym became the foundation for a new approach to education.  

The U.S. Dept. of Education states that:

  • only 16% of high school students are interested in a STEM career and have proven a proficiency in mathematics
  • 57% of high school freshmen who declare an interest in a STEM-related field lose interest before they graduate high school
  • There is an estimated need for at least 8.65 million workers in STEM-related jobs
  • The skills gap in the manufacturing sector is significant. It faces a big shortage of skilled employees – nearly 600,000.

STEM-focused curriculum exposes students to a deeper understanding of technical concepts and careers in the industries related to STEM disciplines. Students who become excited about working in STEM industries at an early age are more likely to attend college and receive a bachelor’s degree.  

Since the development of STEM almost 20 years ago, numerous countries have adopted programs similar to the one developed in the United States. STEM centered education now exists in the United Kingdom, France, China, Australia, South Korean, and Taiwan.

In recent years, drones have begun to play a significant role in STEM curriculum and education in general. Drones can help teach a wide range of concepts and life lessons that otherwise might be difficult for students to understand. Most UAVs are easy to learn to fly, and many are inexpensive, making them accessible to everyone.

How Drones Benefit Education

Drones — ground based, submersible and unmanned aerial vehicles (UAVs) — offer many benefits to educators and students.  

Drones, and UAVs in particular, are excellent complementary tools for STEM education. Students benefit from exposure to technology, show signs of increased information retention rates, and can experience learning on an individual or group level. Educators benefit from high-quality resources, such as coding software with professionally built lesson plans.

As a form of technology, drones are simple and sophisticated at the same time. Studies have shown that the use of technology aids in the retention of information. As students use technology, they are often participating in groups or, at the very least, actively engage in the learning process.

When students are exposed to UAVs in the classroom, they can learn complex concepts, such as aeronautics, in an easily digestible format. Understanding the physics behind what makes an aircraft fly might be challenging to teach, at some grade levels, using traditional methods.  

If instead of reviewing the mathematics behind lift vs. drag, the student learns while flying a drone and the concept is often much clearer.

Additionally, drones are excellent tools for teaching the fundamentals of design. For a drone to submerge, drive, or fly, it must operate within specific parameters. The unmanned aircraft’s design must perform in a manner that adheres to principles such as lift vs. drag.

With a 3D printer, students learn why individual components, such as propellers, are designed a certain way, and can experiment independently with deviations on the design and how it affects performance.

Exposure to programming is another benefit. According to the U.S. Bureau of Labor Statistics, computer programmers had a median pay in 2019 of $41.61 per hour.

Drones bring programming into the classroom. Several high-quality software programs and applications help teach coding with UAS.

Some programs allow educators and students to complete a series of tasks with their drones through coding instructions. Others allow for the drone itself to “learn” how to fly.

In the ideal situation, students can design their drone and program as part of a project-based learning unit. Young children can even grasp programming through the use of drag-and-drop “blocks” of code which when plugged together can make the drone actually perform tasks in front of their eyes.

From an artistic perspective, drones can expose students to photography and videography. Much of our learning process deals with changing perspectives and challenging what is known about the world around us. Drones may be the first time a student sees the world from another viewpoint.  

Some educators are finding success in using aerial photography to aid in teaching map-making, as tools to learning new languages, graphing mathematical concepts, and much more.

Drones work well as tools for both individuals and groups. Students can learn responsibility from flying on their own and, in the process, gain confidence.

In a group, teamwork can showcase how, as a unit, students who know next to nothing about drones can start from scratch and design, build, program, and fly their team’s creation.

Educators are tireless professionals always searching for new methods to make the educational process stronger. With the right guidance, drones are easily integrated into the classroom. The benefits of UAV technology, particularly as a part of a STEM-curriculum, are well worth the investment.

David Daly - Contributing Author

David Daly - Contributing Author

David Daly, is an award-winning photographer/writer and licensed (FAA) Commercial sUAS pilot. A graduate of the United States Naval Academy, David is a former Marine Corps officer with a BS in Oceanography and has earned his MBA from the University of Redlands. David has worked for Fortune 100 companies and has a background in aerospace, construction, military/defense, real estate, and technology.

Ready to Integrate Drones Into Your Organization? Contact Us Today to Get Started!

Could Locust Invasion Lead to Drone Innovation?

As you may have heard, huge swarms of desert locusts are devouring crops across western and central India in what has been seen as the worst locust invasion in almost 30 years.

The locusts had already destroyed over 50,000 hectares (125,000 acres) of cropland by the end of May, and by the sound of things, the situation could get worse in the coming weeks.

That's sad, but what does it have to do with drones?

Drone use was essentially outright banned in India from 2014 to 2018.

Since 2018,  authorities have nominally eased restrictions and tried to cultivate a robust UAS sector, but the regulations are so burdensome, and the permissions application process is so slow, that there has been limited innovation in the UAS sector thus far. 

However, due to the locust invasion, that might change. In rapid response to the crisis, on May 21st, India’s Ministry of Civil Aviation (MoCA) granted a conditional exemption to the agriculture ministry’s Directorate of Plant Protection, Quarantine, and Storage (DPPQS). The exemption allows DPPQS to use remotely piloted aircraft in support of aerial surveillance, photography, public announcements, and spraying pesticides.

According to a senior government official, “this is unprecedented for India since it’s the first time we’ve allowed drones to carry payloads in a civilian use case, or spray any pesticides for that matter.”

He added that there had previously been some trials for crop spraying using drones, but that those were strictly restricted to specific zones, whereas the new exemption allows the agriculture ministry to fly drones anywhere.

Government drones are nice and all, but how will this foster innovation in the UAS sector?

According to the exemption, DPPQS can choose to own and operate their own drones, and each operation has to be carried out under their overall supervision and control, but they can engage third-party UAS service providers to provide and/or operate the drones.

Various state agricultural departments have issued tenders for drones and drone services to the private sector, and there’s been pressure on MoCA to work out some kinks in its regulation of agricultural drone operations that had been ignored for too long. 

Cool. So, back to pesticide drones - are they working?

It’s too early to tell just how cost-effective the pesticide drones are, but the initial reports seem pretty promising.

Notably, according to a deputy director of Rajasthan’s Agriculture Department, when government drones sprayed pesticide in two of Rajasthan’s districts, an impressive 70% of the locusts were destroyed.

However, there are some pretty tough operational challenges that might stymie success. For one, during monsoon season, certain regions of India get very heavy rain, which can make safe UAS operations impossible. For instance, a team in Jaipur was faced with heavy rains until late at night. They seem to have launched the operation around midnight,  which is technically a violation of the exemption’s conditions since technically nighttime operations are currently not allowed.

Additionally, the mountainous and hilly terrain of certain regions may make it hard to maintain visual line one sight (VLOS) throughout operations. On the bright side, perhaps these adverse conditions will force regulatory agencies to issue permission for night and BVLOS operations, which could set a pretty cool status quo for the UAS sector as a whole.

So, will the restrictions be loosened now that drones are "the good guys?"

It’s too early to tell, but this is certainly an unprecedented opportunity for the power of UAS technology to be demonstrated in India and other parts of the world.

If the locust-fighting drones are visibly successful, it could certainly pressure the government to create a framework for UAS authorizations for other dire circumstances such as flooding, landslides, and other natural disasters. And in a broader global context, the publicity of these operations in India could deepen global awareness of this use case. 

The Food and Agriculture Organization (FAO) has already been developing anti-locust drone solutions in east Africa since February, and if they, the government of India, and other disaster relief stakeholders, joined forces, they might just set a fantastic new precedent for drone use in agriculture.

Miriam Hinthorn - Contributing Author

Miriam Hinthorn - Contributing Author

Miriam Hinthorn is an experienced management professional who is currently pursuing her master’s in Data, Economics, and Development Policy at MIT while serving as principal consultant at Consult92.

Miriam developed a love for UAS technology when she served as operations manager at Consortiq. Today, having completed over 30 successful projects in 10 countries, she loves solving a wide variety of logistical, technical, and cultural challenges for her clients so that they can focus on what care about most.

Ready to Integrate Drones Into Your Organization? Contact Us Today to Get Started!